Worksheet for Planning Lot & Sublot Distribution of QC/QA Superstructure Concrete in Metric Units | Contract No Total Plan Quant | ty of QC/QA Superstructure Concreten | í1 | |------------------------------|--------------------------------------|----| | Number of CMD's required | | | | First (| CMD to be used, _ | _ of | Second CMD to be used, of | | | | |-----------------------|-------------------|---|--|---|---|--| | Construction
Phase | Structure No. | Plan Quantity
m ³ | Construction Phase Structure No. Plan Qua m ³ | 2 | | | 2 | | | | \sum : | $= \underline{\qquad} m^3$ $\div 120.0 \text{ m}^3$ | | Σ | $E = \underline{\qquad} m^3$ $\div 120.0 \text{ m}^3$ | | - 1. If decimal portion is less than 0.434, round the result down to nearest whole number to determine the number of Lots. The last Lot of a CMD will contain 3 or 4 Sublots - 2. If decimal portion is equal to or greater than 0.434, round the result up to the nearest whole number to determine the number of Lots. The last Lot of a CMD will be less than the standard quantity, consist of 2 or 3 Sublots, and likely will have one Sublot of partial size. - 3. An individual Sublot cannot contain less than 12.1 m³ or more than 52.0 m³. - 4. The last Lot for a CMD is required to have at least 2 Sublots, but never more than 4 Sublots. | | | | | | 1D of | | | | | | |-------------|---|--|---|---|-------|---|---|---|---|----| | Sublot Nos. | | Quantities (m ³) within Lot Nos. | | | | | | | | | | Nos. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | | 1 | | | | | | | | | | | | 2 | | | | | | | | | | | | 3 | | | | | | | | | | | | 4 | | | | | | | | | | · | | Σ | | | | | | | | | | | | | | | | CM | D of | | | | | | |-------------|---|--|---|----|------|---|---|---|---|----| | Sublot Nos. | | Quantities (m ³) within Lot Nos. | | | | | | | | | | Nos. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | | 1 | | | | | | | | | | | | 2 | | | | | | | | | | | | 3 | | | | | | | | | | | | 4 | | | | | | | | | | | | Σ | | | | | | | | | | | ## INDIANA DEPARTMENT OF TRANSPORTATION MATERIALS AND TEST DIVISION ## RANDOM SAMPLING FOR SUPERSTRUCTURE CONCRETE (METRIC UNITS) | Contract No | Str | . No | _ Construction Ph | ase CMD of _ | | | |-------------|--|----------------------|-------------------|--------------|-------------|---| | QC/QA Sup | erstructure Quan | tity for Phase (z |) m ³ | | | | | Phase Const | ruction Dimension | ons: Length (l) _ | mm = | m, Width (w) | | m | | Average Dep | $pth (d) = \underline{z} = \underline{l} \times w$ | m | | 2000 | | | | Lot No. | Lot Size | m ³ Numbe | r of Sublots | | | | | | | Cumulative | | | Random | Random
Distance | | olot
ation | |---------------|-------------------------------------|---|--|---------------|---|--------------------------|-----------|---------------| | Sublot
No. | Sublot
Size
(m ³) | Quantity
of
Ph/Str
(m ³) | Remainder
Quantity
(m ³) | Random
No. | Quantity
Within
Sublot
(m ³) | From Start of Ph/Str (m) | Begin (m) | End
(m) | | | A | В | z-B | С | D =
AxC | (D-A+B)
w x d | | B
w x d | | 1 | | | | | | | | | | 2 | | | | | | | | | | 3 | | | | | | | | | | 4 | | | | | | | | | ^{*} Sublot information that carries over to the next construction phase or structure placement. | ** | ** Acceptance sample location will be obtained during next construction phase or structure placement. | | | | | | | |----|---|--|--|--|--|--|--| |